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Abstract

In the first part of this talk we summarise some recent progress in modelling quasinormal
modes of non-GR black holes. In the second part we address the issue of testing GR with
supermassive black hole shadows.
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Part ]

Can we test gravity with
supermassive black hole shadows?

Based on KG & Pappas arXiv:2102.13573



A century apart ...
1919

The Eddington-Dyson solar eclipse
expeditions measure gravitational deflection
of light, thus bolstering confidence to
Einstein’s recently formulated GR theory.

2019

The EHT collaboration releases the first
direct image of a BH, the supermassive BH
at the centre of the M87 galaxy. The shadow
(associated with the BH’s photon ring) also
represents extreme light deflection.




BH shadow and its radius

 The textbook definition of a BH shadow is summarised in the figure.

« The shadow is really a manifestation of (i) the presence of a photon ring
and (i1) the absence of a light-emitting surface.

» The shadow radius is an intrinsic
property of the spacetime,
determined by the radius of the
photon ring (unstable circular
photon orbit).

bon = 3V3M =~ 5.2M

Schwarzschild BHs
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BH shadow and its radius

» The shadow of Kerr BHs is almost circular unless the spin is close to
its maximum value a=M and the BH is viewed “edge on”.

One of the first published

shadow figures, Bardeen (1972).

Figure 6. The apparent shape of an extreme (¢ = m) Kerr black hole as seen by a distant
observer in the equatorial plane, if the black hole is in front of a source of illumination
with an angular size larger than that of the black hole.



M87* black hole factsheet

M ~ 6.6 x 10° M

Mass estimated from:

(i) The radius of the quasi-circular
shadow, given the measured angular
size/distance and assuming GR.

(i1) Stellar kinematics in the vicinity

of the BH. The accretion flow geometry
(modelled with the help of
numerous GR-MHD simulations)

d~ 17.9 Mpc is uncertain, being something
between quasi-spherical to a thick
J a disk configuration.
— — — poorly constrained

M?



The M87* shadow as a test of GR
gravity (and of the “Kerr hypothesis™)

e A recent EHT paper [Psaltis et al. PRL 125 (2020)] used the shadow
radius to constrain deviations from GR.

e This was done with the help of the Johannsen (2013) metric, a cleverly
designed parametrised deformed Kerr spacetime.

e For simplicity we ignore the BH spin (it only has a modest effect unless it is
very high). The shadow radius can be identified with the impact parameter
b of the photon ring. Only one metric component matters:
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The M87* shadow as a test of GR
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Psaltis et al. (2020)

e However, such tests of GR come with some caveats:

Matter: the impact of the largely unknown accretion properties. [Gralla (2020)]

Gravity: the impact of dimensional constants in non-GR theories.



The impact of accretion physics

e The actual apparent shadow radius does depend on the geometry of the

illuminating accretion flow. This can vary from a quasi-spherical flow to a
thin disk flow.

e An (unrealistic) example: the shadow of a “backlit” BH is somewhat larger,
b~ 6.2M.

b=3vV3M

Gralla et al. (2019)




The impact of accretion physics

e Accretion in M87* is something between quasi-spherical to a thick disk
configuration. The corresponding shadow radius is [Gralla et al. (2019)]:

5.2 <b/M < 5.8

e We can replot the previous shadow radius figure (assuming a non-rotating
BH) as a function of the deformation away from GR, with the “matter
uncertainty” added.

The uncertainty in the 6.0
accretion physics mostly ’
overlaps with the b > bgr

measurement error. § sof
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The b < bgr range remains 45
“clean”.
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Non-GR gravity: the key role of
dimensional coupling constants

e Many of the widely studied alternative to GR theories of gravity are described
by Lagrangians of the general form:

L = LGR + Lscalar + afscalar terms} x {non-linear curvature terms} + Lt

with a coupling constant of dimensionality: « = (length)” = (mass)” n =1

e A typical example is Einstein-scalar-Gauss-Bonnet gravity (EsGB):

1 1
L= R——-g"o 0, —af (¢)Ré3 + Las f(¢) = dimensionless,

167 2 o
om “user-specified”

with Rép = R* " Rop,5 — 4R Rop + R? o = (length)?



Bounds from GW signals of binary BHs

e Among other things, GWs probe the celestial mechanics of the binary.

e For the particular example of EAGB gravity, the metric of a non-rotating BH

looks like this:
2M\ 8 ,M° M o f'(Poo)
== (1=50) g o (T froen =
[ Julié & Berti (2019)]
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Nair et al. (2019) + Clifton et al. (2020)



Mass-rescaled coupling constant

e Now assume we want to test a theory like EsGB using the M87* shadow.

e The shadow and the observed image is the result of photons moving along
the BH’s geodesics. We can write schematically:

EsGB geodesics- GR geodesics = O(17)

e The theory’s extra “universal constant” is a, which is constrained by GW data.
For a supermassive BH like M87* the dimensionless 1 is mass-rescaled:
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e Photons near M87* “see” a GR BH spacetime; to a very high precision the
shadow is indistinguishable from Kerr and the test fails!

e The same argument applies to EMRI sources for LISA [Maselli et al. (2020)],
but in that case the instrument also probes the non-geodesic orbital evolution.



Implications for shadow-based tests of GR

e The previous analysis, and given the current precision of GW observations,
has serious repercussions for probing deviations from GR using the image/
shadow of a supermassive BH.

e Supermassive BH shadows cannot test non-GR theories when:

* The Kerr metric is still an admissible solution (trivial case).

* The BH metric is non-Kerr but the theory is endowed with dimensional
coupling constants. This class contains the majority of theories
considered in the literature.

e Supermassive BH shadows can test non-GR theories when:

* A theory has dimensionless coupling constants in its Lagrangian.
A member of this minority class is Einstein-aether gravity.

* A theory with dimensional coupling constants can evade the GW
bounds in stellar mass BHs (see next slide).



Evading the GW bounds (I)

e There are two mechanisms that could enable the evasion of GW bounds
from compact object binaries.

e Screening: the non-GR degrees of freedom are suppressed below some
lengthscale (this is a “trick” commonly used in cosmology for evading bounds
from solar system and compact binary tests). Typically, this is achieved by a
scalar-coupling modification of the matter part of the Lagrangian.

This is irrelevant for BHs, given their vacuum solution nature.

e BH screening could be achieved by the addition of higher-order derivatives in
the “non-GR” part of the Lagrangian (e.g. the Vainshtein mechanism).
However, screening solar-mass BHs but not supermassive ones may require
some fine-tuning in the screening physics.



Evading the GW bounds (II)

e Spin-induced scalarisation: the non-GR BH is Kerr below some spin
threshold. Above the threshold it undergoes a spontaneous “scalarisation”,
and becomes a non-Kerr BH with scalar “hair” (i.e. scalar charge).

e Scalarisation in EsGB gravity: it takes 1.1
place for (see figure): S S ]
N \ solid: even
0.9 r dashed: odd
a>05M n~—(0.1-10) =
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e Existing GW observations probe BHs
with a 5 O?M, SO they could miss 061 Kerr-thr —
higher spin scalarised systems. 05 - om = —
—a/M?
e M87* could be rapidly spinning, so scalarisation Adapted from Berti et al. (2021).
could be a viable way of evading the GW bounds. See also Herdeiro et al. (2021)

However, this possibility represents a small
portion of the a/M-n parameter space.




Part I conclusions

e The combination of GW bounds and mass-suppression of dimensional
coupling constants makes BH shadow-based tests of gravity blind to a
large portion of non-GR theories.

e Shadows could still probe theories with dimensionless constants or special
cases where screening and/or spin-scalarisation invalidate GW bounds.

e In all cases the uncertain accretion flow properties introduce a moderate

error. T

e The resu

ne regime b < bgr may not be affected.

ts discussed here should have similar implications for astrometric

tests of GR around our Galactic SgrA* supermassive BH (e.g. the GRAVITY
experiment).

e The same can be said for electromagnetic observations of accretion flows
around AGNs (since both the matter and radiation move along geodesics
of the supermassive BH).



Part 11

Quasi-normal modes of non-GR
black holes

based on:

KG & Silva PRD (2019)
Silva & KG PRD (2020)
Bryant, Silva, Yagi & KG (in preparation)



BH ringdown and “spectroscopy”
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BH spectroscopy beyond GR

e Testing deviations from GR: extraction of QNM frequencies from
ringdown signal (“BH spectroscopy”).

e This approach requires modelling of QNMs of BHs beyond GR.

e The relevant QNM perturbation wave equations have been derived for a
number of theories [or even classes of theories as in Tattersall et al. (2018)].
In their vast majority, these equations refer to spherically symmetric (i.e.
non-rotating) BHs.

e Despite the relative wealth of perturbation equations, relatively few
QNM solutions have been obtained so far.

e Our work on QNMs is based on the short-wavelength eikonal
approximation as a means for solving the equations. The approach
is largely “theory-agnostic”.



Geodesic analogy of QNMs

e In GR, the eikonal approximation is based on the geodesic analogy of the
BH’s fundamental QNM: its frequency w = wpgr + wwy can be directly linked

to the geodesic properties of the photon ring (i.e. the unstable circular orbit of
photons).

e The key quantities are the orbital frequency and Lyapunov exponent
(rate of diverge/convergence of light rays near the photon ring).

In a spherically symmetric spacetime:

Photon ring Eikonal QNM
Q. = ﬁ _ i _ \/_gtt(rph) wr = {n
P ut bph T'ph
1
1 2 g Wr = __h/ph’ 0
2 _ 1.2 % [t ) ph
-t @),



QNMs beyond GR

e In general, a non-GR theory will have the usual tensorial (metric) part

coupled with a scalar field degree. This coupling is reflected in the
perturbation equations describing QNMs. In spherical symmetry, and after

separation of variables, these have the general form:

2 _ :
a7y W? — Vi (6,1)] % = ao(£,1,0)0 + as (£, 1, w)% = tensor perturbation
O= scalar perturbation

26 10 7 | X(r) = tortoise coordinate
e+ ()T 4 [~ Vo(£r)] © = bo(£. 1w+ br (£, 0) 2

e Eikonal approximation (e=bookkeeping parameter):

P = Ay ($)€is(m)/€ O = Ag (:zz)eis(g"‘)/€ with the condition at the “peak”

Se=0atr=mry



BHs 1in Gauss-Bonnet gravity

e Einstein-scalar-Gauss-Bonnet gravity was discussed in Part I of this talk.
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Axial perturbations & QNMs

e The axial parity modes do not couple to the scalar field. Their radial
eigenfunction Q is described by the equation:

d? d
d—ag +pax(r)d_§ + [w2 - Vax(r)] Q=0

e Eikonal limit ansatz: Q(z) = Aax(x)e?®(®)/¢
e Solving the equation to O(e™*)and O(e") order leads to wr and wy. Asit
turns out, the peak is located at m, = rpn = 3M.

e Leading-order eikonal results, accurate to O(a?)

¢ 71987 o fo” 1 121907 a2 f}?
Mwp=——1{1- 0 Mw, = ——— (1= 0
R 3\/§< 174960 M4 ) e 6\/3( 174960 M* )

e The axial eikonal modes admit the same geodesic analogy as in GR.



Polar perturbations & QNMs

e In contrast to the previous case, the polar parity modes are described by
coupled equations for the tensor and scalar perturbations.

d*y d) o
A2 | Ppol(r)% + [Apol(’l“)w2 — Vi (¢, 7“)] Y =ag(l,r,w)O + ay (¥, T,w)%
d?e ]

A2 Hlw? = Va(l,1)] © = bo(€,r,w)h + by (£, 7“760)%

The potentials and coupling functions
are derived to O(a?) precision

e An interesting technical detail: the eikonal limit € << 1 and the expansion
in the coupling a do not commute, i.e. it matters which expansion comes
first and which parameter is formally the smallest. In order to ensure a
smooth GR limit we take a << e.



Polar QNMs

e We show leading-order eikonal results, accurate to O(a?)

27 M4

¢ 4 o ’2> 1 44 o202 f}?
Mw = — (1= 0 M — —— [ 1 = 0
e ( I ( 729 M* )

e As in the axial case, non-GR corrections first appear at O(o?). In addition,
the polar modes displays a “Zeeman” splitting with two possible solutions.

e It is unclear if the present case of coupled equations admits some sort of
geodesic analogy.



Eikonal vs numerical QNMs (axial)

e The same QNMs have been calculated numerically (and to higher order in a)
by Blazquez-Salcedo et al. (2016) for the special case of Einstein-dilaton-GB
gravity, 1.e.

f(8) = 7¢°

e The following figures show the [=2 QNM frequencies normalised to their
corresponding GR values.
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Eikonal vs numerical QNMs (polar)

e The polar QNMs have two branches, “gravitational-led” and “scalar-led”,
named after their corresponding GR limit (a—>0). These two branches

correspond to our +/- solutions.

e We plot leading order and higher order eikonal results.
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Part IT conclusions

e The eikonal approximation is a versatile tool for calculating QNMs of non-
GR BHs. The example of EAGB (as well as previous work on Chern-Simons
gravity) suggests a few % precision with respect to numerical data. This can
be improved by adding higher-order pieces.

e The eikonal scheme should be equally well applicable to non-GR BHs with
spin (in which case a numerical computation might not be that easy).

e No simple geodesic analogy was found for the coupled tensor-scalar QNMs
(but this does not mean there isn’t one!).

e The eikonal QNM formulae (and the wave equations themselves) are subject
to the same mass-suppression effect of the coupling constant as the geodesic
equations. LISA’s ability to probe other theories may be compromised (this

was first suggested in Maselli et al. (2020)).
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